Regulation of KinI kinesin ATPase activity by binding to the microtubule lattice
نویسندگان
چکیده
KinI kinesins are important in regulating the complex dynamics of the microtubule cytoskeleton. They are unusual in that they depolymerize, rather than move along microtubules. To determine the attributes of KinIs that distinguish them from translocating kinesins, we examined the ATPase activity, microtubule affinity, and three-dimensional microtubule-bound structure of a minimal KinI motor domain. Together, the kinetic, affinity, and structural data lead to the conclusion that on binding to the microtubule lattice, KinIs release ADP and enter a stable, low-affinity, regulated state, from which they do not readily progress through the ATPase cycle. This state may favor detachment, or diffusion of the KinI to its site of action, the microtubule ends. Unlike conventional translocating kinesins, which are microtubule lattice-stimulated ATPases, it seems that with KinIs, nucleotide-mediated modulation of tubulin affinity is only possible when it is coupled to protofilament deformation. This provides an elegant mechanistic basis for their unique depolymerizing activity.
منابع مشابه
Functional asymmetry in kinesin and dynein dimers.
Active transport along the microtubule lattice is a complex process that involves both the Kinesin and Dynein superfamily of motors. Transportation requires sophisticated regulation much of which occurs through the motor's tail domain. However, a significant portion of this regulation also occurs through structural changes that arise in the motor and the microtubule upon binding. The most obvio...
متن کاملRole of the kinesin neck linker and catalytic core in microtubule-based motility
Kinesin motor proteins execute a variety of intracellular microtubule-based transport functions [1]. Kinesin motor domains contain a catalytic core, which is conserved throughout the kinesin superfamily, followed by a neck region, which is conserved within subfamilies and has been implicated in controlling the direction of motion along a microtubule [2] [3]. Here, we have used mutational analys...
متن کاملSingle Molecular Observation of Self-Regulated Kinesin Motility†
Kinesin-1 is an ATP-driven molecular motor that transports various cargoes in cells, a process that can be regulated by the kinesin tail domain. Here, kinesin ATPase activity and motility were inhibited in vitro by interacting the kinesin heavy chain C-terminal tail domain with the kinesin N-terminal motor domain. Though the tail domain can directly interact with microtubules, we found 70% of t...
متن کاملCa2+/calmodulin regulation of the Arabidopsis kinesin-like calmodulin-binding protein.
The kinesin family motor protein KCBP (kinesin-like calmodulin binding protein) was identified during a screen for Arabidopsis calmodulin-binding proteins [Reddy, et al., 1996b: J. Biol Chem. 271:7052-7060]. KCBP contains a C-terminal motor domain and is unique among kinesin motors in that it has a calmodulin-binding site. We expressed the KCBP motor domain in Escherichia coli and examined its ...
متن کاملThe KinI kinesin Kif2a is required for bipolar spindle assembly through a functional relationship with MCAK
Although the microtubule-depolymerizing KinI motor Kif2a is abundantly expressed in neuronal cells, we now show it localizes to centrosomes and spindle poles during mitosis in cultured cells. RNAi-induced knockdown of Kif2a expression inhibited cell cycle progression because cells assembled monopolar spindles. Bipolar spindle assembly was restored in cells lacking Kif2a by treatments that alter...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of Cell Biology
دوره 163 شماره
صفحات -
تاریخ انتشار 2003